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1 Problem Statement

Let xj be N Bernoulli random variables each associated with corresponding distribution

probability pj. In other words, xj takes on the value unity with probability pj and is zero

otherwise. There are also N weights, wj, each 1↔ 1 with corresponding xj.

The interest is in the quantity S:

S =
N−1

∑
j=0

wjxj. (1)

and, in particular, its distribution or features of its distribution. These are needed to

support choosing a value T such that

JS > TK ≥ 0.90. (2)

where J. . . e . . .K is modern notation for the probability of the event e. The criterion of (2)

is that of a probabilistic lower bound, specifically, the 0.1 quantile of the cumulative

distribution function of S seen as a random variable.

Note that the Markov inequality

JS ≥ TK ≤ EJSK
T

. (3)
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has roughly the same form, but is the wrong bound. What’s needed is something like

JS ≥ f (EJSK, 0.10)K > 0.1. (4)

where f (., .) is some unknown function. Proofs of this inequality such as this for dis-

crete random variables as we have here, adapted from [5].

Assuming x ≥ a,

EJXK = (∑
x≤a

xJX = xK) + (∑
x>a

JX = xK (5)

≥ ∑
x≥a

aJX = xK+ 0

= a ∑
x≥a

JX = xK

= aJX ≥ aK.

This doesn’t suggest a modification to obtain what’s wanted.

The plan, then, is to see if a means can be derived to estimate the 0.1 quantile or,

potentially, any other, from moments or cumulants of the distribution of S where these

are derived in various ways [4, 19, 7, 14, 17, 12]. The results will be checked against

numerical simulations.

This procedure is apparently well known in risk analysis for finance, specifically for

calculating value at risk [2, 8, 17, 3, 12, 13]. Figure 1 illustrates a Value at Risk or VaR

superimposed on a probability density.

It is attractive to have a closed-form estimate of the quantile for analytical and other

reasons.
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Figure 1: Value at Risk or VaR superimposed on a p.d.f., as shown in Figure 1 of [3].
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2 Using Characteristic Functions, Moments, and Cumulants

The key insight with respect to the sum of independent Bernoulli random variables

as (1) presents is1, from [16, (4.3) of Chapter 9]:

. . . [I]f X1, X2, . . . , Xn are independent random variables whose rth cumulants

exist, then the rth cumulant of [their] sum exists and is equal to the sum of the

rth cumulations of the individual random variables. In symbols,

κr[X1 + · · ·+ Xn] = κr[X1] + · · ·+ κr[Xn].

Of course the same property extends to moments and therefore variances.

The next step, discussed in §3, that of obtaining an estimate of the 0.1 quantile, is to use

the Cornish-Fisher expansion [4, 7, 12, 21].

Although cumulants can be obtained from logs of characteristic functions of distribu-

tions directly, in this case it is easier to obtain moments first, and then identify cumulants

by their direct comparisons [16, Chapter 9, Section 2, and Exercise 2.1].

The core element of (1) is wjxj, where wj is a (constant) weight and xj is a Bernoulli

random variable with success probability Jxj = 1K = pj. The corresponding character-

istic function is

φwjxj(t) = 1− pj + eiwjt pj. (6)

Here i denotes the imaginary basis for a complex number, or
√
−1.

It is not needed here2, but note the characteristic function of a some of such elemental

characteristic functions is the product of the elements [16, Chapter 9, Section 4]:

N−1

∏
j=0

(1− pj + eiwjt pj). (7)

1Emphasis is as in original text. To be consistent with notation here later, "κ" has been substituted for Parzen’s "K".
2There is a technique for numerically inverting the characteristic function to obtain the corresponding distribution [20]. However that’s very heavy-handed,

given that all that’s wanted is the 0.1 quantile, and it is not at all clear if, in that case, it wouldn’t be simpler to simulate and obtain the 0.1 quantile empirically.
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Moments of the random variable X = wjxj are obtainable from:

EJXkK =
1
ik

d2

dt2 φX(0) (8)

assuming they exist. Specifically, in this case,

EJ(wjxj)K = pjwj

EJ(wjxj)
2K = pjw2

j

EJ(wjxj)
3K = pjw3

j (9)

EJ(wjxj)
4K = pjw4

j .
...

So, in general,

EJ(wjxj)
kK = pjwk

j (10)

Quoting (2.24) from [16, Chapter 9, Section 2], with slight notational changes, repairing

a mistake for EJX4K, and adding EJX5K from [15]:

EJXK = κ1

EJX2K = κ2 + κ2
1

EJX3K = κ3 + 3κ2κ1 + κ3
1 (11)

EJX4K = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ2

1 + κ4
1

EJX5K = κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ2
1 + 15κ2

2κ1 + 10κ2κ3
1 + κ5

1.

where κk is the kth cumulant. Expressions are available in the reverse direction, too,

given in Figure 2, taken from [15].
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Figure 2: Cumulants expressed in terms of moments, taken from [15]. Here µk = EJXkK.

May 27, 2019 (revised draft, version 1.3) 6 of 16

mailto:bayesianlogic.1@gmail.com


Control statistics for sums of weighted Bernoullis Jan Galkowski

Actually, there are recurrences connecting moments and cumulants [18]. These are

EJXmK =
m−1

∑
l=0

(
m− 1

l

)
κm−lEJXlK (12)

connecting moments to cumulants, and

κm = EJXmK−
m−1

∑
l=1

(
m− 1

l

)
κm−lEJXlK (13)

connecting cumulants to moments. Both (12) and (13) assume EJX0K = 1 and κ1 =

EJXK.

For this case, and using (9) and [15]’s listing of cumulants in terms of moments,

κ1,j = pjwj.

κ2,j = pj(1− pj)w2
j .

κ3,j = pj(pj − 1)(2pj − 1)w3
j . (14)

κ4,j = pj(1− pj)(1 + 6pj(pj − 1))w4
j .

κ5,j = pj(pj − 1)(2pj − 1)(1 + 12pj(pj − 1))w5
j .

Recall from §2 that these are elemental cumulants and, so, to obtain the corresponding

cumulants for N pairs of wj and pj

κk =
N−1

∑
j=0

κk,j. (15)

Note that

• κ1 corresponds to the mean.

• κ2 corresponds to the variance.

• κ3 corresponds to skewness, hereinafter denoted S .

• κ4 corresponds to kurtosis, hereinafter denoted K.

• κ5 does not correspond to any central moment.
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3 Approximating Quantiles

The details of using the Cornish-Fisher expansion with cumulants is concisely summa-

rized on the pertinent Wikipedia page [21]. Their presentation is repeated below for

easy reference, and is paraphrased.

Given random variable S having first five cumulants κ1 (mean), κ2 (variance), κ3 (skew-

ness), κ4 (kurtosis), and κ5, and assuming they exist, S’s value, yq at quantile q can be

estimated as

yq ≈ κ1 + ηq
√

κ2 (16)

where Φ−1(.) denotes the quantile function of the Gaussian, He` is the `th probabilists’

Hermite polynomial, and [1, 21]:

Q = Φ−1(q)

ηq = Q+γ1h1(Q) + γ2h2(Q) + γ2
1h11(Q) + γ3h3(Q)

+γ1γ2h12(Q) + γ3
1h111(Q) + ...

γm−2 =
κm√

κm
2

, m ∈ {3, 4, 5}

h1(x) =
He2(x)

6

h2(x) =
He3(x)

24

h11(x) = − 2He3 + He1(x)
36

h3(x) =
He4(x)

24

h12(x) = − He4(x) + He2(x)
24

h111(x) =
12He4(x) + 19He2(x)

324
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4 Numerical Verification of Estimates of Mean and Variance

A simulation of (1) was developed wherein a vector, p, of probabilities were drawn from

a Beta distribution, a vector of non-negative weights, w, were drawn from a Gamma

distribution, and then, governed by p, M = 10000 vectors xk, k ∈ {1, . . . , M}, drawn

from the Bernoulli distribution. Then, per (1), Sk = w · xk was calculated for each and

saved as {Sk}. N, the length of these vectors, was chosen N = 10, since that is what

is typical for the application described in §1 and §6. An estimated probability density

was developed from the M-sized collection of saved sums. Thirty of these are shown

in Figure 3.

The first two cumulants, κ1 and κ2 of (14) from §2, corresponding to the theoretical

mean and variance of {Sk}, were calculated from the associated w and p and then

compared to corresponding empirical estimates obtained from {Sk}. These are shown

in Table 1.

The root-mean-square (“r.m.s.”) of differences between empirical and theoretical means

is 0.101, and between variances is 1.72.
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Figure 3: 30 examples of probability densities for randomly chosen probability ranges and weights. Prob-
abilities were drawn from a Beta distribution with shape parameters 3 and 5. Weights were drawn from
a Gamma distribution having a shape parameter of 50 and a mean and variance of 0.65 and 0.1, respec-
tively. N was chosen N = 10. To obtain the densities, 10000 weighted Bernoulli draws with the chosen
weights and probabilities were taken. Note that these cases are not the same as those depicted in Table 1.
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case theoretical mean empirical mean theoretical variance empirical variance
1 22.5925 22.7437 115.9253 115.0241
2 25.9221 25.9485 107.8515 107.7594
3 32.6782 32.8422 152.3976 152.4199
4 30.5859 30.6560 121.4982 123.3974
5 29.0620 28.9458 113.5502 114.5186
6 28.3021 28.1854 116.8333 118.4524
7 27.5977 27.5099 111.6372 111.3303
8 31.1029 30.9988 148.6481 148.2248
9 19.9227 19.8461 108.7768 108.6283

10 22.4399 22.3739 117.6045 118.2619
11 29.6900 29.6468 129.0127 127.7211
12 39.4418 39.4884 139.1841 140.3870
13 29.1248 29.1017 130.8515 133.3888
14 31.7461 31.8392 122.5111 122.5502
15 30.3805 30.3650 125.5060 123.6547
16 31.6396 31.6644 150.6599 150.3868
17 32.6584 32.7855 117.2436 118.9896
18 28.5442 28.2846 124.4687 126.5307
19 22.4014 22.5012 125.3310 125.4180
20 34.4542 34.3631 151.0494 150.4672
21 33.6706 33.6410 153.0100 150.4160
22 33.6057 33.8122 133.7792 132.5872
23 29.4692 29.4233 150.3464 150.2598
24 23.7564 23.7159 117.7394 118.4578
25 26.1091 26.1142 106.1848 105.3554
26 31.9851 31.9177 116.6009 113.7822
27 28.1937 28.2118 108.9182 108.8900
28 33.8491 33.5593 126.8576 124.0030
29 33.7225 33.6594 139.3465 142.1042
30 25.0182 24.8609 122.7071 124.4079

Table 1: Comparison of theoretical and empirical values for κ1 and κ2. Note that these cases are not the same as those depicted
in Figure 3.
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5 Numerical Verification of Quantile Estimates

This documents calculation of 0.1 point quantiles based upon 60 cases simulated using

the same mechanism as in §4, but calculating 20000 Bernoulli sums of (1) in each case.

In addition, the qapx_cf function from the PDQutils package of R was used as a check

on these calculations, using an algorithm by Lee and Lin [10, 11]. Results are shown in

Tables 2 and 3.
case empirical mean empirical variance empirical quantile theoretical quantile this theoretical quantile PDQ

1 32.9797 129.8619 16.6621 18.2947 18.1974
2 23.3029 103.9386 11.5903 10.1858 10.0093
3 35.6498 115.6665 21.7294 21.9174 21.8355
4 27.4030 138.5882 13.8070 12.4841 12.2888
5 30.7842 140.5132 16.1893 15.5885 15.4807
6 23.6414 123.5996 8.0337 9.4472 9.2391
7 33.3234 138.2507 17.9625 18.2319 18.0683
8 28.5700 131.2127 15.0152 13.7652 13.6113
9 35.8538 160.2247 17.6493 19.6511 19.5152

10 25.2388 124.8288 10.0660 11.1013 10.9492
11 27.5132 126.8804 14.3114 13.1795 13.0255
12 32.4450 139.9611 15.8156 17.3127 17.1681
13 42.3776 157.4592 25.2537 26.4286 26.3077
14 30.5225 109.8600 14.9775 17.1446 17.0496
15 27.0552 121.9170 14.3961 13.0194 12.8829
16 25.7942 107.2610 13.2263 12.5012 12.3773
17 30.1212 146.6143 14.9276 14.5826 14.4343
18 25.6266 136.2889 8.7289 10.5425 10.3595
19 27.3580 133.6954 14.7043 12.6506 12.5077
20 24.7955 118.6032 11.1641 10.8832 10.7325
21 37.6403 129.6239 22.7020 23.1427 23.0592
22 35.7208 147.4724 20.9749 20.1679 20.0585
23 30.4075 148.2704 15.4425 14.5947 14.4274
24 31.8899 128.0726 16.4501 17.3606 17.2325
25 28.7807 128.3610 14.7281 14.3691 14.2278
26 28.6212 131.7968 14.8376 13.8156 13.6813
27 30.5921 121.9015 14.9505 16.3310 16.2048
28 25.6497 120.8399 12.5376 11.5853 11.3879
29 40.1411 159.3767 23.7778 24.0693 23.9396
30 31.2252 134.8015 15.5482 16.4695 16.3294

Table 2: Comparison of theoretical and empirical values for quantiles, part 1 of 2

The r.m.s. of differences between the empirical 0.1 quantile and the theoretical quantile

calculated using the techniques shown here is 1.17. The r.m.s. between the empirical 0.1

quantile and the theoretical calculated using the Lee and Lin algorithm is 1.18 [10, 11].

The empirical quantile was calculated using the hdquantile function from the Hmisc

package of R.
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case empirical mean empirical variance empirical quantile theoretical quantile this theoretical quantile PDQ
31 24.4026 131.0512 8.8306 9.8575 9.6447
32 28.5894 122.9555 14.5983 14.1973 14.0545
33 30.1835 129.4478 15.1990 15.6538 15.5263
34 28.9134 127.6445 15.1286 14.3956 14.2732
35 24.5316 111.6464 13.2815 11.0837 10.9445
36 33.4178 134.7716 19.0582 18.4435 18.3149
37 24.6837 109.9888 11.9591 11.4190 11.3239
38 27.4881 118.6400 14.4048 13.5478 13.4175
39 36.6025 135.8329 22.5416 21.8021 21.6503
40 38.8762 116.2878 23.4947 25.1733 25.0915
41 26.1658 108.4353 14.2998 12.9731 12.8847
42 26.3829 122.5958 13.9600 12.1930 12.0542
43 23.8599 130.3633 8.5535 9.2428 9.0295
44 25.5692 106.7007 14.4374 12.5136 12.4349
45 41.9755 134.9717 27.9455 27.0368 26.9320
46 25.7016 97.7220 13.2841 12.9852 12.8847
47 35.9778 116.9141 22.2802 22.1047 22.0383
48 26.1507 130.0790 13.8580 11.6842 11.5414
49 22.7353 131.6986 8.0267 8.0594 7.8494
50 33.4486 149.3450 17.0829 17.8496 17.6765
51 34.0479 122.0116 20.3035 19.8182 19.6657
52 34.9673 113.4448 20.7247 21.4211 21.3133
53 26.9476 121.0059 14.1009 12.9536 12.8147
54 31.8159 164.3415 16.1803 15.4935 15.3368
55 32.2368 140.2028 16.2697 17.0987 16.9739
56 30.1118 143.8761 15.4801 14.8178 14.6515
57 30.5810 125.7977 15.3738 16.2855 16.1220
58 29.1580 137.4266 14.9654 14.0415 13.8733
59 25.5754 127.4023 10.3064 11.1173 10.9527
60 28.9041 119.2765 14.6813 14.8459 14.7034

Table 3: Comparison of theoretical and empirical values for quantiles, part 2 of 2
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6 Application to Original Question

Simulation of the Bernoulli sums from (1) for a large number of cases gives an as-

sortment of empirical probability density functions like those illustrated in Figure 3.

The code for calculating theoretical quantiles for these is concise, and is given using

R as Listing [1] for both the calculation done here and the invocation of the from the

PDQutils package. Obviously, the latter is more concise, and is therefore recommended

if R is an option. Cumulants, of course, still need to be calculated.

Otherwise, the calculation done here can be rendered in Python or whatever program-

ming language is suitable. The present implementation assumes the target language

supports basic numerical capability such as calculating Hermite polynomials.
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Listing [1]

library(polynom)
library(orthopolynom)
library(mpoly)
library(moments)
library(PDQutils)

theoreticalMean<- function(W,P) sum(W*P)
theoreticalVariance<- function(W,P) sum(W^2*P*(1-P))
theoreticalSkew<- function(W,P) sum(P*(P-1)*(2*P-1)*W^3)
# (This is not excess kurtosis. Still need to subtract 3 to get kurtosis w.r.t. Gaussian.)
theoreticalKurtosis<- function(W,P) sum(P*(1-P)*(1 + 6*P*(P - 1))*W^4)
theoreticalKappa5<- function(W,P) sum(P*(P-1)*(2*P-1)*(1 + 12*P*(1-P))*W^5)

gamma1<- function(W,P) theoreticalSkew(W,P)/sqrt(theoreticalVariance(W,P)^3)
gamma2<- function(W,P) theoreticalKurtosis(W,P)/sqrt(theoreticalVariance(W,P)^4)
gamma3<- function(W,P) theoreticalKappa5(W,P)/sqrt(theoreticalVariance(W,P)^5)

He.polynomials<- hermite(degree=1:4, kind="he", normalized=TRUE)
ThePoint<- 0.10
TheQuantile<- qnorm(ThePoint)

yAtThePoint<- function(xPoint=0.1, W, P)
{

#
xQuantile<- qnorm(xPoint)
#
He<- unlist(sapply(X=He.polynomials, FUN=function(He.k) as.function(He.k, silent=TRUE)(xQuantile)))
#
h1<- He[2]/6
h2<- He[3]/24
h11<- - (2*He[3]+He[1])/36
h3<- He[4]/120
h12<- -(He[4] + He[2])/24
h111<- (12*He[4] + 19*He[2])/324
#
g1<- gamma1(W,P)
g2<- gamma2(W,P)
g3<- gamma3(W,P)
#
mu<- theoreticalMean(W,P)
sigma<- sqrt(theoreticalVariance(W,P))
#
w<- xQuantile + (g1*h1) + (g2*h2 + g1^2*h11) + (g3*h3 + g1*g2*h12 + g1^3*h111)
#
yp<- mu + sigma*w
#
return(yp)

}

yViaPDQ<- function(Pq, W, P)
{

cumulants<- c(theoreticalMean(W,P), theoreticalVariance(W,P), theoreticalSkew(W,P),
theoreticalKurtosis(W,P), theoreticalKappa5(W,P))

y<- qapx_cf(p=Pq, raw.cumulants=cumulants, support=c(0,Inf), lower.tail=TRUE, log.p=FALSE)
return(y)

}
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