Category Archives: multivariate adaptive regression splines

climate model democracy

“One of the most interesting things about the MIP ensembles is that the mean of all the models generally has higher skill than any individual model.” We hold these truths to be self-evident, that all models are created equal, that … Continue reading

Posted in American Association for the Advancement of Science, American Meteorological Association, American Statistical Association, AMETSOC, Anthropocene, attribution, Bayesian model averaging, Bloomberg, citizen science, climate, climate business, climate change, climate data, climate disruption, climate education, climate justice, Climate Lab Book, climate models, coastal communities, coastal investment risks, complex systems, differential equations, disruption, dynamic linear models, dynamical systems, ecology, emergent organization, ensemble methods, ensemble models, ensembles, Eric Rignot, evidence, fear uncertainty and doubt, FEMA, forecasting, free flow of labor, global warming, greenhouse gases, greenwashing, Humans have a lot to answer for, Hyper Anthropocene, Jennifer Francis, Joe Romm, Kevin Anderson, Lévy flights, LBNL, leaving fossil fuels in the ground, liberal climate deniers, mathematics, mathematics education, model-free forecasting, multivariate adaptive regression splines, National Center for Atmospheric Research, obfuscating data, oceanography, open source scientific software, optimization, perceptrons, philosophy of science, phytoplankton | Leave a comment

Why smooth?

I’ve encountered a number of blog posts this week which seem not to understand the Bias-Variance Tradeoff in regard to Mean-Squared-Error. These arose in connection with smoothing splines, which I was studying in connection with multivariate adaptive regression splines, that … Continue reading

Posted in Akaike Information Criterion, American Statistical Association, Antarctica, carbon dioxide, climate change, denial, global warming, information theoretic statistics, likelihood-free, multivariate adaptive regression splines, non-parametric model, science denier, smoothing, splines, statistical dependence | 1 Comment