Category Archives: boosting

HadCRUT4 and GISTEMP series filtered and estimated with simple RTS model

Happy Vernal Equinox! This post has been updated today with some of the equations which correspond to the models. An assessment of whether or not there was a meaningful slowdown or “hiatus” in global warming, was recently discussed by Tamino … Continue reading

Posted in AMETSOC, anemic data, Bayesian, boosting, bridge to somewhere, cat1, changepoint detection, climate, climate change, climate data, climate disruption, climate models, complex systems, computation, data science, dynamical systems, geophysics, George Sughihara, global warming, hiatus, information theoretic statistics, machine learning, maths, meteorology, MIchael Mann, multivariate statistics, physics, prediction, Principles of Planetary Climate, rationality, reasonableness, regime shifts, sea level rise, time series | 5 Comments

high dimension Metropolis-Hastings algorithms

If attempting to simulate from a multivariate standard normal distribution in a large dimension, when starting from the mode of the target, i.e., its mean γ, leaving the mode γis extremely unlikely, given the huge drop between the value of the density at the mode γ and at likely realisations Continue reading

Posted in Bayes, Bayesian, Bayesian inversion, boosting, chance, Christian Robert, computation, ensembles, Gibbs Sampling, James Spall, Jerome Friedman, Markov Chain Monte Carlo, mathematics, maths, MCMC, Monte Carlo Statistical Methods, multivariate statistics, numerical software, numerics, optimization, reasonableness, Robert Schapire, SPSA, state-space models, statistics, stochastic algorithms, stochastic search, stochastics, Yoav Freund | Leave a comment

“Causal feedbacks in climate change”

Today I was reviewing and re-reading the nonlinear time series technical literature I have, seeking ideas on how to go about using the statistical ensemble learning technique called “boosting” with them. (See the very nice book, R. E. Schapire, Y. … Continue reading

Posted in Anthropocene, boosting, Carbon Cycle, carbon dioxide, Carbon Worshipers, cat1, climate, climate change, climate data, climate disruption, complex systems, convergent cross-mapping, denial, differential equations, diffusion processes, dynamical systems, ecology, Egbert van Nes, empirical likelihood, ensembles, environment, Ethan Deyle, Floris Takens, forecasting, fossil fuels, geophysics, George Sughihara, global warming, greenhouse gases, Hao Ye, machine learning, Maren Scheffer, mathematics, maths, meteorology, physics, rationality, reasonableness, science, state-space models, Takens embedding theorem, time series, Timothy Lenton, Victor Brovkin | 2 Comments