# Category Archives: Bayesian inversion

## On Smart Data

One of the things I find surprising, if not astonishing, is that in the rush to embrace Big Data, a lot of learning and statistical technique has been left apparently discarded along the way. I’m hardly the first to point … Continue reading

## p-values and hypothesis tests: the Bayesian(s) rule

The American Statistical Association of which I am a longtime member issued an important statement today which will hopefully move statistical practice in engineering and especially in the sciences away from the misleading practice of using p-values and hypothesis tests. … Continue reading

## “Grid shading by simulated annealing” [Martyn Plummer]

Source: Grid shading by simulated annealing (or what I did on my holidays), aka “fun with GCHQ job adverts”, by Martyn Plummer, developer of JAGS. Excerpt: I wanted to solve the puzzle but did not want to sit down with … Continue reading

## high dimension Metropolis-Hastings algorithms

If attempting to simulate from a multivariate standard normal distribution in a large dimension, when starting from the mode of the target, i.e., its mean γ, leaving the mode γis extremely unlikely, given the huge drop between the value of the density at the mode γ and at likely realisations Continue reading

## Generating supports for classification rules in black box regression models

Inspired by the extensive and excellent work in approximate Bayesian computation (see also), especially that done by Professors Christian Robert and colleagues (see also), and Professor Simon Wood (see also), it occurred to me that the complaints regarding lack of … Continue reading

## reblog: “Tiny Data, Approximate Bayesian Computation and the Socks of Karl Broman”

It’s Rasmus Bååth, in a post and video of which I am very fond: http://www.sumsar.net/blog/2014/10/tiny-data-and-the-socks-of-karl-broman/.

## On differential localization of tumors using relative concentrations of ctDNA. Part 2.

Part 1 of this series introduced the idea of ctDNA and its use for detecting cancers or their resurgence, and proposed a scheme whereby relative concentrations of ctDNA at two or more sites after controlled disturbance might be used to … Continue reading

## On differential localization of tumors using relative concentrations of ctDNA. Part 1.

Like most mammalian tissue, tumors often produce shards of DNA as a byproduct of cell death and fracture. This circulating tumor DNA is being studied as a means of detecting tumors or their resurgence after treatment. (See also a Q&A … Continue reading