# Category Archives: MCMC

## Less evidence for a global warming hiatus, and urging more use of Bayesian model averaging in climate science

(This post has been significantly updated midday 15th February 2018.) I’ve written about the supposed global warming hiatus of 2001-2014 before: “‘Overestimated global warming over the past 20 years’ (Fyfe, Gillett, Zwiers, 2013)”, 28 August 2013 “Warming Slowdown?”, Azimuth, Part … Continue reading

## Repaired R code for Markov spatial simulation of hurricane tracks from historical trajectories

(Slight update, 28th June 2020.) I’m currently studying random walk and diffusion processes and their connections with random fields. I’m interested in this because at the core of dynamic linear models, Kalman filters, and state-space methods there is a random … Continue reading

## Newt Gingrich and Van Jones. Right on.

It’s the thing. And it addresses how media and people forget about the actual statistics, and focus on the White Hot Bright Light. A study by Gelman, Fagan, and Kiss A study by Freyer A counterpoint to the Freyer study … Continue reading

## On Smart Data

One of the things I find surprising, if not astonishing, is that in the rush to embrace Big Data, a lot of learning and statistical technique has been left apparently discarded along the way. I’m hardly the first to point … Continue reading

## p-values and hypothesis tests: the Bayesian(s) rule

The American Statistical Association of which I am a longtime member issued an important statement today which will hopefully move statistical practice in engineering and especially in the sciences away from the misleading practice of using p-values and hypothesis tests. … Continue reading

## “Grid shading by simulated annealing” [Martyn Plummer]

Source: Grid shading by simulated annealing (or what I did on my holidays), aka “fun with GCHQ job adverts”, by Martyn Plummer, developer of JAGS. Excerpt: I wanted to solve the puzzle but did not want to sit down with … Continue reading

## high dimension Metropolis-Hastings algorithms

If attempting to simulate from a multivariate standard normal distribution in a large dimension, when starting from the mode of the target, i.e., its mean γ, leaving the mode γis extremely unlikely, given the huge drop between the value of the density at the mode γ and at likely realisations Continue reading

## R and “big data”

On 2nd November 2015, Wes McKinney, the developer of the highly useful Python pandas module (and other things, including books), wrote an amusing blog post, “The problem with the data science language wars“. I by no means disagree with him. … Continue reading

## Sea Surface Anomalies

(Hat tip to Susan Stone.) The graphic below shows sea surface temperature anomalies relative to the 1971-2000 baseline First data are courtesy of the Climate Reanalyzer, a joint project of the Climate Change Institute at the University of Maine, and … Continue reading

## “… the most patronizing start to an answer I have ever received …”

Professor Christian Robert tries to help out a student of MCMC on Cross Validated and earns the comment that his help had “the most patronizing start to an answer I have ever received“. I learned a new term: primitivus petitor.

## “A vignette on Metropolis” (Christian Robert)

Originally posted on Xi'an's Og:

Over the past week, I wrote a short introduction to the Metropolis-Hastings algorithm, mostly in the style of our Introduction to Monte Carlo with R book, that is, with very little theory and…

## “Unbiased Bayes for Big Data: Path of partial posteriors” (Christian Robert)

Unbiased Bayes for Big Data: Path of partial posteriors.

## Markov Chain Monte Carlo methods and logistic regression

This post could also be subtitled “Residual deviance isn’t the whole story.” My favorite book on logistic regression is by Dr Joseph Hilbe, Logistic Regression Models, CRC Press, 2009, Chapman & Hill. It is a solidly frequentist text, but its … Continue reading

## Bayesian change-point analysis for global temperatures, 1850-2010

Professor Peter Congdon reports on two Bayesian models for global temperature shifts in his textbook, Applied Bayesian Modelling, as “Example 6.12: Global temperatures, 1850-2010”, on pages 252-253. A direct link is available online. The first is apparently original with Congdon, … Continue reading

## Christian Robert on the amazing Gibbs sampler

Professor Christian Robert remarks on the amazing Gibbs sampler. Implicitly he’s also underscoring the power of properly done Bayesian computational analysis. For here we have a problem with a posterior distribution having two strong modes, so a point estimate, like … Continue reading

## On nested equivalence classes of climate models, ordered by computational complexity

I’m digging into the internals of ABC, for professional and scientific reasons. I’ve linked a great tutorial elsewhere, and argued that this framework, advanced by Wood, and Wilkinson (Robert), and Wilkinson (Darren), and Hartig and colleagues, and Robert and colleagues, … Continue reading

## Liddell and Kruschke, on conditional logistic Bayesian estimation

(“Ostracism and fines in a public goods game with accidental contributions: The importance of punishment type”) An overview. The article

## example of Bayesian inversion

This is based upon my solution of Exercise 2.3, page 18, R. Christensen, W. Johnson, A. Branscum, T. E. Hanson, Bayesian Ideas and Data Analysis, Chapman & Hall, 2011. The purpose is to show how information latent in a set … Continue reading

## Blind Bayesian recovery of components of residential solid waste tonnage from totals data

This is a sketch of how maths and statistics can do something called blind source separation, meaning to estimate the components of data given only their totals. Here, I use Bayesian techniques for the purpose, sometimes called Bayesian inversion, using … Continue reading

## “The joy and martyrdom of trying to be a Bayesian”

Bayesians have all been there. Some of us don’t depend upon producing publications to assure our pay, so we less have the pressure of pleasing peer reviewers. Nonetheless, it’s all reacting to “What the hell are you doing? I don’t … Continue reading

## How fast is JAGS?

How fast is JAGS?.

## Sea Level Rise, after Church and White (2006)

Modeling done with a Bayesian Rauch-Tung-Striebel algorithm, estimating priors of variance for observations and state by using a stationary bootstrap for the series using Politis and Romano algorithm.

## Bayes vs the virial theorem

Bayes vs the virial theorem.

## The zero-crossings trick for JAGS: Finding roots stochastically

BUGS has a “zeros trick” (Lund, Jackson, Best, Thomas, Spiegelhalter, 2013, pages 204-206; see also an online illustration) for specifying a new distribution which is not in the standard set. The idea is to couple an invented-for-the-moment Poisson density to … Continue reading

## “Data-driven science is a failure of imagination” (Petr Keil)

Happened across this today … I could not agree more: “Data-driven science is a failure of imagination” by Petr Keil. I look forward to reading his posts on Bayesian statistics.