### Support the Keeling Curve

### Distributed Solar: The Democratizaton of Energy

### Meta

# Category Archives: multivariate statistics

## “Holy crap – an actual book!”

Originally posted on mathbabe:

Yo, everyone! The final version of my book now exists, and I have exactly one copy! Here’s my editor, Amanda Cook, holding it yesterday when we met for beers: Here’s my son holding it: He’s offered…

Posted in American Association for the Advancement of Science, Buckminster Fuller, business, citizen science, citizenship, civilization, complex systems, confirmation bias, data science, data streams, deep recurrent neural networks, denial, economics, education, engineering, ethics, evidence, Internet, investing, life purpose, machine learning, mathematical publishing, mathematics, mathematics education, maths, moral leadership, multivariate statistics, numerical software, numerics, obfuscating data, organizational failures, politics, population biology, prediction, prediction markets, privacy, quantitative biology, quantitative ecology, rationality, reason, reasonableness, rhetoric, risk, Schnabel census, smart data, sociology, statistical dependence, statistics, the right to be and act stupid, the right to know, the value of financial assets, transparency, UU Humanists
Leave a comment

## Bayesian blocks via PELT in R

The Bayesian blocks algorithm of Scargle, Jackson, Norris, and Chiang has an enthusiastic user community in astrostatistics, in data mining, and among some in machine learning. It is a dynamic programming algorithm (see VanderPlas referenced below) and, so, exhibits optimality … Continue reading

Posted in American Statistical Association, AMETSOC, anomaly detection, astrophysics, Cauchy distribution, changepoint detection, engineering, geophysics, multivariate statistics, numerical analysis, numerical software, numerics, oceanography, population biology, population dynamics, Python 3, quantitative biology, quantitative ecology, R, Scargle, spatial statistics, square wave approximation, statistics, stepwise approximation, time series, Woods Hole Oceanographic Institution
Leave a comment

## On Smart Data

One of the things I find surprising, if not astonishing, is that in the rush to embrace Big Data, a lot of learning and statistical technique has been left apparently discarded along the way. I’m hardly the first to point … Continue reading

Posted in Akaike Information Criterion, Bayes, Bayesian, Bayesian inversion, big data, bigmemory package for R, changepoint detection, data science, data streams, dlm package, dynamic generalized linear models, dynamic linear models, dynamical systems, Generalize Additive Models, generalized linear models, information theoretic statistics, Kalman filter, linear algebra, logistic regression, machine learning, Markov Chain Monte Carlo, mathematics, mathematics education, maths, maximum likelihood, MCMC, Monte Carlo Statistical Methods, multivariate statistics, numerical analysis, numerical software, numerics, quantitative biology, quantitative ecology, rationality, reasonableness, sampling, smart data, state-space models, statistical dependence, statistics, the right to know, time series
Leave a comment

## HadCRUT4 and GISTEMP series filtered and estimated with simple RTS model

Happy Vernal Equinox! This post has been updated today with some of the equations which correspond to the models. An assessment of whether or not there was a meaningful slowdown or “hiatus” in global warming, was recently discussed by Tamino … Continue reading

Posted in AMETSOC, anemic data, Bayesian, boosting, bridge to somewhere, cat1, changepoint detection, climate, climate change, climate data, climate disruption, climate models, complex systems, computation, data science, dynamical systems, geophysics, George Sughihara, global warming, hiatus, information theoretic statistics, machine learning, maths, meteorology, MIchael Mann, multivariate statistics, physics, prediction, Principles of Planetary Climate, rationality, reasonableness, regime shifts, sea level rise, time series
2 Comments

## high dimension Metropolis-Hastings algorithms

If attempting to simulate from a multivariate standard normal distribution in a large dimension, when starting from the mode of the target, i.e., its mean γ, leaving the mode γis extremely unlikely, given the huge drop between the value of the density at the mode γ and at likely realisations Continue reading

Posted in Bayes, Bayesian, Bayesian inversion, boosting, chance, Christian Robert, computation, ensembles, Gibbs Sampling, James Spall, Jerome Friedman, Markov Chain Monte Carlo, mathematics, maths, MCMC, Monte Carlo Statistical Methods, multivariate statistics, numerical software, numerics, optimization, reasonableness, Robert Schapire, SPSA, state-space models, statistics, stochastic algorithms, stochastic search, stochastics, Yoav Freund
Leave a comment

## Your future: Antarctica, in detail

Climate and geophysical accuracy demands fine modeling grids, and very large supercomputers. The best and biggest supercomputers have not been available for climate work, until recently. Watch how results differ if fine meshes and big supercomputers are used. Why haven’t … Continue reading

Posted in Antarctica, Anthropocene, bridge to nowhere, climate, climate change, climate disruption, climate zombies, disingenuity, ecology, ensembles, forecasting, geophysics, global warming, Hyper Anthropocene, ignorance, IPCC, Lawrence Berkeley National Laboratory, LBNL, living shorelines, mathematics, mathematics education, maths, mesh models, meteorology, multivariate statistics, numerical software, optimization, physics, rationality, reasonableness, risk, science, science education, sea level rise, spatial statistics, state-space models, statistics, stochastic algorithms, stochastics, supercomputers, temporal myopia, the right to know, thermodynamics, time series, University of California Berkeley, WAIS
Leave a comment

## Comprehensive and compact tutorial on Petris’ DLM package in R; with an update about Helske’s KFAS

A blogger named Lalas produced on Quantitative Thoughts a very comprehensive and compact tutorial on the R package dlm by Petris. I use dlm a lot. Unfortunately, Lalas does not give details on how the SVD is used. They do … Continue reading

Posted in Bayes, Bayesian, dynamic linear models, dynamical systems, forecasting, Kalman filter, mathematics, maths, multivariate statistics, numerical software, open source scientific software, prediction, R, Rauch-Tung-Striebel, state-space models, statistics, stochastic algorithms, SVD, time series
Leave a comment