### Distributed Solar: The Democratizaton of Energy

### Blogroll

- Ives and Dakos techniques for regime changes in series
- The Alliance for Securing Democracy dashboard
- Survey Methodology, Prof Ron Fricker http://faculty.nps.edu/rdfricke/
- Higgs from AIR describing NAO and EA Stephanie Higgs from AIR Worldwide gives a nice description of NAO and EA in the context of discussing “The Geographic Impact of Climate Signals on European Winter Storms”
- Patagonia founder Yvon Chouinard on how businesses can help our collective environmental mess Patagonia’s Yvon Chouinard set the standard for how a business can mitigate the ravages of capitalism on earth’s environment. At 81 years old, he’s just getting started.
- Fear and Loathing in Data Science Cory Lesmeister’s savage journey to the heart of Big Data
- Gabriel's staircase
- Ted Dunning
- NCAR AtmosNews
- The Mermaid's Tale A conversation about biological complexity and evolution, and the societal aspects of science
- "The Expert"
- Tim Harford's “More or Less'' Tim Harford explains – and sometimes debunks – the numbers and statistics used in political debate, the news and everyday life
- Lenny Smith's CHAOS: A VERY SHORT INTRODUCTION This is a PDF version of Lenny Smith’s book of the same title, also available from Amazon.com
- International Society for Bayesian Analysis (ISBA)
- OOI Data Nuggets OOI Ocean Data Lab: The Data Nuggets
- What If
- "Impacts of Green New Deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries" (Jacobson, Delucchi, Cameron, et al) Global warming, air pollution, and energy insecurity are three of the greatest problems facing humanity. To address these problems, we develop Green New Deal energy roadmaps for 143 countries.
- SASB Sustainability Accounting Standards Board
- Tony Seba Solar energy, electric vehicle, energy storage, and business disruption professor and visionary
- Thaddeus Stevens quotes As I get older, I admire this guy more and more
- All about ENSO, and lunar tides (Paul Pukite) Historically, ENSO has been explained in terms of winds. But recently — and Dr Paul Pukite has insisted upon this for a long time — the oscillation of ENSO has been explained as a large-scale slosh due to lunar tidal forcing.
- Pat's blog While it is described as “The mathematical (and other) thoughts of a (now retired) math teacher”, this is false humility, as it chronicles the present and past life and times of mathematicians in their context. Recommended.
- Mark Berliner's video lecture "Bayesian mechanistic-statistical modeling with examples in geophysical settings"
- Mertonian norms
- Musings on Quantitative Paleoecology Quantitative methods and palaeoenvironments.
- Dominic Cummings blog Chief advisor to the PM, United Kingdom
- Nadler Strategy, LLC, on sustainability Thinking about business, efficient and effective management, and business value
- All about models
- Dollars per BBL: Energy in Transition
- Healthy Home Healthy Planet
- Risk and Well-Being
- Charlie Kufs' "Stats With Cats" blog “You took Statistics 101. Now what?”
- Harvard's Project Implicit
- All about Sankey diagrams
- Leverhulme Centre for Climate Change Mitigation
- Giant vertical monopolies for energy have stopped making sense
- London Review of Books
- Why "naive Bayes" is not Bayesian Explains why the so-called “naive Bayes” classifier is not Bayesian. The setup is okay, but estimating probabilities by doing relative frequencies instead of using Dirichlet conjugate priors or integration strays from The Path.
- Slice Sampling
- WEAPONS OF MATH DESTRUCTION, reviews Reviews of Cathy O’Neil’s new book
- Rasmus Bååth's Research Blog Bayesian statistics and data analysis
- Prediction vs Forecasting: Knaub “Unfortunately, ‘prediction,’ such as used in model-based survey estimation, is a term that is often subsumed under the term ‘forecasting,’ but here we show why it is important not to confuse these two terms.”
- "Perpetual Ocean" from NASA GSFC
- Team Andrew Weinberg Walking September 8th for the Jimmy Fund!
- Awkward Botany
- ggplot2 and ggfortify Plotting State Space Time Series with ggplot2 and ggfortify
- Karl Broman
- Earth Family Beta MIchael Osborne’s blog on Science and the like
- Brian McGill's Dynamic Ecology blog Quantitative biology with pithy insights regarding applications of statistical methods
- Professor David Draper

### climate change

- Ricky Rood's “What would happen to climate if we (suddenly) stopped emitting GHGs today?
- Agendaists Eli Rabett’s coining of a phrase
- The beach boondoggle Prof Rob Young on how owners of beach property are socializing their risks at costs to all of us, not the least being it seems coastal damage is less than it actually is
- “The discovery of global warming'' (American Institute of Physics)
- Ice and Snow
- "A field guide to the climate clowns"
- Reanalyses.org
- Climate model projections versus observations
- Wally Broecker on climate realism
- Sir David King David King’s perspective on climate, and the next thousands of years for humanity
- "Climate science is setttled enough"
- Berkeley Earth Surface Temperature
- Jacobson WWS literature index
- Tuft's Professor Kenneth Lang on the physical chemistry of the Greenhouse Effect
- Exxon-Mobil statement on UNFCCC COP21
- Klaus Lackner (ASU), Silicon Kingdom Holdings (SKH) Capturing CO2 from air at scale
- History of discovering Global Warming From the American Institute of Physics.
- AIP's history of global warming science: impacts The American Institute of Physics has a fine history of the science of climate change. This link summarizes the history of impacts of climate change.
- Grid parity map for Solar PV in United States
- "Betting strategies on fluctuations in the transient response of greenhouse warming" By Risbey, Lewandowsky, Hunter, Monselesan: Betting against climate change on durations of 15+ years is no longer a rational proposition.
- "Impacts of Green New Deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries" (Jacobson, Delucchi, Cameron, et al) Global warming, air pollution, and energy insecurity are three of the greatest problems facing humanity. To address these problems, we develop Green New Deal energy roadmaps for 143 countries.
- "Warming Slowdown?" (part 2 of 2) The idea of a global warming slowdown or hiatus is critically examined, emphasizing the literature, the datasets, and means and methods for telling such. The second part.
- The great Michael Osborne's latest opinions Michael Osborne is a genius operative and champion of solar energy. I have learned never to disregard ANYTHING he says. He is mentor of Karl Ragabo, and the genius instigator of the Texas renewable energy miracle.
- The Sunlight Economy
- Steve Easterbrook's excellent climate blog: See his "The Internet: Saving Civilization or Trashing the Planet?" for example Heavy on data and computation, Easterbrook is a CS prof at UToronto, but is clearly familiar with climate science. I like his “The Internet: Saving Civilization or Trashing the Planet” very much.
- SolarLove
- Simple box models and climate forcing IMO one of Tamino’s best posts illustrating climate forcing using simple box models
- "When Did Global Warming Stop" Doc Snow’s treatment of the denier claim that there’s been no warming for the most recent N years. (See http://hubpages.com/@doc-snow for more on him.)
- "Getting to the Energy Future We Want," Dr Steven Chu
- Model state level energy policy for New Englad Bob Massie’s proposed energy policy for Massachusetts, an admirable model for energy policy anywhere in New England
- Andy Zucker's "Climate Change and Psychology"
- Mrooijer's Global Temperature Explorer
- Jacobson WWS literature index
- "Mighty Microgrids" Webinar This is a Webinar on YouTube about Microgrids from the Institute for Local Self-Reliance (ILSR), featuring New York State and Minnesota
- HotWhopper: It's excellent. Global warming and climate change. Eavesdropping on the deniosphere, its weird pseudo-science and crazy conspiracy whoppers.
- Nick Bower's "Scared Scientists"
- Mathematics and Climate Research Network The Mathematics and Climate Research Network (MCRN) engages mathematicians to collaborating on the cryosphere, conceptual model validation, data assimilation, the electric grid, food systems, nonsmooth systems, paleoclimate, resilience, tipping points.
- Climate Change Reports By John and Mel Harte
- Climate Change: A health emergency … New England Journal of Medicine Caren G. Solomon, M.D., M.P.H., and Regina C. LaRocque, M.D., M.P.H., January 17, 2019 N Engl J Med 2019; 380:209-211 DOI: 10.1056/NEJMp1817067
- Skeptical Science
- The HUMAN-caused greenhouse effect, in under 5 minutes, by Bill Nye
- The Carbon Cycle The Carbon Cycle, monitored by The Carbon Project
- `Who to believe on climate change': Simple checks By Bart Verheggen
- Wind sled Wind sled: A zero carbon way of exploring ice sheets
- All Models Are Wrong Dr Tamsin Edwards blog about uncertainty in science, and climate science
- Eli on the spectroscopic basis of atmospheric radiation physical chemistry
- Thriving on Low Carbon
- "Warming Slowdown?" (part 1 of 2) The idea of a global warming slowdown or hiatus is critically examined, emphasizing the literature, the datasets, and means and methods for telling such. In two parts.
- Tamino's Open Mind Open Mind: A statistical look at climate, its science, and at science denial
- Interview with Wally Broecker Interview with Wally Broecker

### Archives

### Jan Galkowski

# Category Archives: stochastic search

## Sampling: Rejection, Reservoir, and Slice

An article by Suilou Huang for catatrophe modeler AIR-WorldWide of Boston about rejection sampling in CAT modeling got me thinking about pulling together some notes about sampling algorithms of various kinds. There are, of course, books written about this subject, … Continue reading

Posted in accept-reject methods, American Statistical Association, Bayesian computational methods, catastrophe modeling, data science, diffusion processes, empirical likelihood, Gibbs Sampling, insurance, Markov Chain Monte Carlo, mathematics, Mathematics and Climate Research Network, maths, Monte Carlo Statistical Methods, multivariate statistics, numerical algorithms, numerical analysis, numerical software, numerics, percolation theory, Python 3 programming language, R statistical programming language, Radford Neal, sampling, slice sampling, spatial statistics, statistics, stochastic algorithms, stochastic search
Leave a comment

## Six cases of models

The previous post included an attempt to explain land surface temperatures as estimated by the BEST project using a dynamic linear model including regressions on both quarterly CO2 concentrations and ocean heat content. The idea was to check the explanatory … Continue reading

Posted in AMETSOC, anemic data, Anthropocene, astrophysics, Bayesian, Berkeley Earth Surface Temperature project, BEST, carbon dioxide, climate, climate change, climate data, climate disruption, climate models, dlm package, dynamic linear models, dynamical systems, environment, fossil fuels, geophysics, Giovanni Petris, global warming, greenhouse gases, Hyper Anthropocene, information theoretic statistics, maths, maximum likelihood, meteorology, model comparison, numerical software, Patrizia Campagnoli, Rauch-Tung-Striebel, Sonia Petrone, state-space models, stochastic algorithms, stochastic search, SVD, time series
1 Comment

## “Grid shading by simulated annealing” [Martyn Plummer]

Source: Grid shading by simulated annealing (or what I did on my holidays), aka “fun with GCHQ job adverts”, by Martyn Plummer, developer of JAGS. Excerpt: I wanted to solve the puzzle but did not want to sit down with … Continue reading

Posted in approximate Bayesian computation, Bayesian, Bayesian inversion, Boltzmann, BUGS, Christian Robert, Gibbs Sampling, JAGS, likelihood-free, Markov Chain Monte Carlo, Martyn Plummer, mathematics, maths, MCMC, Monte Carlo Statistical Methods, optimization, probabilistic programming, SPSA, stochastic algorithms, stochastic search
Leave a comment

## high dimension Metropolis-Hastings algorithms

If attempting to simulate from a multivariate standard normal distribution in a large dimension, when starting from the mode of the target, i.e., its mean γ, leaving the mode γis extremely unlikely, given the huge drop between the value of the density at the mode γ and at likely realisations Continue reading

Posted in Bayes, Bayesian, Bayesian inversion, boosting, chance, Christian Robert, computation, ensembles, Gibbs Sampling, James Spall, Jerome Friedman, Markov Chain Monte Carlo, mathematics, maths, MCMC, Monte Carlo Statistical Methods, multivariate statistics, numerical software, numerics, optimization, reasonableness, Robert Schapire, SPSA, state-space models, statistics, stochastic algorithms, stochastic search, stochastics, Yoav Freund
Leave a comment

## Generating supports for classification rules in black box regression models

Inspired by the extensive and excellent work in approximate Bayesian computation (see also), especially that done by Professors Christian Robert and colleagues (see also), and Professor Simon Wood (see also), it occurred to me that the complaints regarding lack of … Continue reading

Posted in approximate Bayesian computation, Bayes, Bayesian, Bayesian inversion, generalized linear models, machine learning, numerical analysis, numerical software, probabilistic programming, rationality, reasonableness, state-space models, statistics, stochastic algorithms, stochastic search, stochastics, support of black boxes
Leave a comment

## reblog: “Tiny Data, Approximate Bayesian Computation and the Socks of Karl Broman”

It’s Rasmus Bååth, in a post and video of which I am very fond: http://www.sumsar.net/blog/2014/10/tiny-data-and-the-socks-of-karl-broman/.

## Southern New England Meteorology Conference, 24th October 2015

I attending the 2015 edition of the Southern New England Meteorology Conference in Milton, MA, near the Blue Hill, and its Blue Hill Climatological Observatory, of which I am a member as we as of the American Meteorological Society. I … Continue reading

Posted in Anthropocene, capricious gods, climate, Dan Satterfield, dynamical systems, ensembles, ENSO, environment, floods, forecasting, geophysics, Hyper Anthropocene, information theoretic statistics, mesh models, meteorology, model comparison, NCAR, NOAA, nor'easters, oceanography, probability, science, spatial statistics, state-space models, statistics, stochastic algorithms, stochastic search, stochastics, time series
1 Comment

## On differential localization of tumors using relative concentrations of ctDNA. Part 1.

Like most mammalian tissue, tumors often produce shards of DNA as a byproduct of cell death and fracture. This circulating tumor DNA is being studied as a means of detecting tumors or their resurgence after treatment. (See also a Q&A … Continue reading

Posted in approximate Bayesian computation, Bayesian, Bayesian inversion, cardiovascular system, diffusion, dynamic linear models, eigenanalysis, engineering, forecasting, mathematics, maths, medicine, networks, prediction, spatial statistics, statistics, stochastic algorithms, stochastic search, wave equations
3 Comments

## On the Climate Club

But if the other advanced nations had a stick — a tariff of 4 percent on the imports from countries not in the “climate club” — the cost-benefit calculation for the United States would flip. Not participating in the club … Continue reading

Posted in citizenship, civilization, climate, climate change, climate disruption, climate education, ecology, economics, education, environment, ethics, geophysics, global warming, humanism, investing, investment in wind and solar energy, IPCC, mathematics, mathematics education, maths, meteorology, NASA, NCAR, NOAA, open data, open source scientific software, politics, rationality, reasonableness, risk, science, science education, sociology, state-space models, statistics, stochastic search, stochastics, sustainability, temporal myopia, time series, transparency, Unitarian Universalism, UU Humanists, wind power, zero carbon
2 Comments

## “A vignette on Metropolis” (Christian Robert)

Originally posted on Xi'an's Og:

Over the past week, I wrote a short introduction to the Metropolis-Hastings algorithm, mostly in the style of our Introduction to Monte Carlo with R book, that is, with very little theory and…

## Markov Chain Monte Carlo methods and logistic regression

This post could also be subtitled “Residual deviance isn’t the whole story.” My favorite book on logistic regression is by Dr Joseph Hilbe, Logistic Regression Models, CRC Press, 2009, Chapman & Hill. It is a solidly frequentist text, but its … Continue reading

Posted in Bayes, Bayesian, logistic regression, MCMC, notes, R, statistics, stochastic algorithms, stochastic search
3 Comments

## Christian Robert on the amazing Gibbs sampler

Professor Christian Robert remarks on the amazing Gibbs sampler. Implicitly he’s also underscoring the power of properly done Bayesian computational analysis. For here we have a problem with a posterior distribution having two strong modes, so a point estimate, like … Continue reading

## Christian Robert on Alan Turing

Alan Turing Institute. See Professor Robert’s earlier post on Turing, too.

Posted in Bayes, Bayesian, citizenship, education, ethics, history, humanism, mathematics, maths, politics, rationality, reasonableness, statistics, stochastic algorithms, stochastic search, the right to know, Wordpress
Tagged Alan Turing
Leave a comment

## engineering and understanding with stable models

Stable distributions or Lévy -stable models is a class of probability distributions which contains the Gaussian, the Cauchy (or Lorentz), and the Lévy distribution. They are parameterized by an which is . Values of of 1 or less give distributions … Continue reading

Posted in approximate Bayesian computation, Bayesian, citizen science, climate, climate change, climate education, differential equations, diffusion processes, ecology, economics, forecasting, geophysics, information theoretic statistics, IPCC, mathematics, mathematics education, maths, meteorology, model comparison, NOAA, oceanography, physics, rationality, reasonableness, risk, science, science education, stochastic search, the right to know
Leave a comment

## On nested equivalence classes of climate models, ordered by computational complexity

I’m digging into the internals of ABC, for professional and scientific reasons. I’ve linked a great tutorial elsewhere, and argued that this framework, advanced by Wood, and Wilkinson (Robert), and Wilkinson (Darren), and Hartig and colleagues, and Robert and colleagues, … Continue reading

Posted in approximate Bayesian computation, Bayes, Bayesian, biology, ecology, environment, forecasting, geophysics, IPCC, mathematics, maths, MCMC, meteorology, NCAR, NOAA, oceanography, optimization, population biology, Principles of Planetary Climate, probabilistic programming, R, science, stochastic algorithms, stochastic search
Leave a comment

## struggling with problems already partly solved by others

Climate modelers and models see as their frontier the problem of dealing with spontaneous dynamics in systems such as atmosphere or ocean which are not directly forced by boundary conditions such as radiative forcing due to increased greenhouse gas (“GHG”) … Continue reading

Posted in approximate Bayesian computation, Bayes, Bayesian, biology, climate, climate education, differential equations, ecology, engineering, environment, geophysics, IPCC, mathematics, mathematics education, meteorology, model comparison, NCAR, NOAA, oceanography, physics, population biology, probabilistic programming, rationality, reasonableness, risk, science, science education, statistics, stochastic algorithms, stochastic search
1 Comment

## Bayesian deconvolution of stick lengths

Consider trying to determine the length of a straight stick. Instead of the measurement errors being clustered about zero, suppose the errors are known to be always positive, that is, no measurement ever underestimates the length of the stick. Such … Continue reading

## The dp-means algorithm of Kulis and Jordan in R and Python

dp-means algorithm. Think k-means but with the number of clusters calculated. By John Myles White, in R. (Github link off that page.) By Scott Hendrickson, in Python. (Github link off that page.)

Posted in Bayesian, Gibbs Sampling, JAGS, mathematics, maths, R, statistics, stochastic algorithms, stochastic search
Tagged dp-means
Leave a comment

## Blind Bayesian recovery of components of residential solid waste tonnage from totals data

This is a sketch of how maths and statistics can do something called blind source separation, meaning to estimate the components of data given only their totals. Here, I use Bayesian techniques for the purpose, sometimes called Bayesian inversion, using … Continue reading

## singingbanana does “The Lorenz Machine”

On the power of mathematics, and why 55:45 versus 50:50 matters.

Posted in Bayesian, engineering, mathematics, maths, rationality, reasonableness, risk, stochastic algorithms, stochastic search
Tagged code breaking
Leave a comment

## “The joy and martyrdom of trying to be a Bayesian”

Bayesians have all been there. Some of us don’t depend upon producing publications to assure our pay, so we less have the pressure of pleasing peer reviewers. Nonetheless, it’s all reacting to “What the hell are you doing? I don’t … Continue reading

## The zero-crossings trick for JAGS: Finding roots stochastically

BUGS has a “zeros trick” (Lund, Jackson, Best, Thomas, Spiegelhalter, 2013, pages 204-206; see also an online illustration) for specifying a new distribution which is not in the standard set. The idea is to couple an invented-for-the-moment Poisson density to … Continue reading

Posted in Bayesian, BUGS, education, forecasting, Gibbs Sampling, JAGS, mathematics, MCMC, probabilistic programming, R, statistics, stochastic search
Tagged error-in-variables problem, optimization, zeros trick
4 Comments

## “Double Plus Big Data”

Big Data. All the rage. Why? Apart from distributed software folks strutting their stuff, something which is likely to be fleeting, especially when quantum computing comes around, what does it buy anyone? I can see four possibilities, which I consider … Continue reading

## “Bayes’ theorem in the 21st century”

Professor Bradley Efron wrote a piece on “Bayes’ theorem in the 21st century” in Science for 7th June 2013 which, as always, offers his measured approach to the frequentist-Bayesian controversy (see B. Efron, “A 250 year argument: Belief, behavior, and the … Continue reading