# Category Archives: Markov Chain Monte Carlo

## Sampling: Rejection, Reservoir, and Slice

An article by Suilou Huang for catatrophe modeler AIR-WorldWide of Boston about rejection sampling in CAT modeling got me thinking about pulling together some notes about sampling algorithms of various kinds. There are, of course, books written about this subject, … Continue reading

## Less evidence for a global warming hiatus, and urging more use of Bayesian model averaging in climate science

(This post has been significantly updated midday 15th February 2018.) I’ve written about the supposed global warming hiatus of 2001-2014 before: “‘Overestimated global warming over the past 20 years’ (Fyfe, Gillett, Zwiers, 2013)”, 28 August 2013 “Warming Slowdown?”, Azimuth, Part … Continue reading

## Merry Newtonmas tomorrow! On finding the area of the Batman Shape using Monte Carlo integration

It’s Newtonmas 2017 tomorrow! What better way to celebrate than talk about integration! The Batman Shape (sometimes called the Batman Curve, somewhat erroneously, I think) looks like this: You can find details about it at Wolfram MathWorld, including its area … Continue reading

## Newt Gingrich and Van Jones. Right on.

It’s the thing. And it addresses how media and people forget about the actual statistics, and focus on the White Hot Bright Light. A study by Gelman, Fagan, and Kiss A study by Freyer A counterpoint to the Freyer study … Continue reading

## On Smart Data

One of the things I find surprising, if not astonishing, is that in the rush to embrace Big Data, a lot of learning and statistical technique has been left apparently discarded along the way. I’m hardly the first to point … Continue reading

## p-values and hypothesis tests: the Bayesian(s) rule

The American Statistical Association of which I am a longtime member issued an important statement today which will hopefully move statistical practice in engineering and especially in the sciences away from the misleading practice of using p-values and hypothesis tests. … Continue reading

## “Grid shading by simulated annealing” [Martyn Plummer]

Source: Grid shading by simulated annealing (or what I did on my holidays), aka “fun with GCHQ job adverts”, by Martyn Plummer, developer of JAGS. Excerpt: I wanted to solve the puzzle but did not want to sit down with … Continue reading

## high dimension Metropolis-Hastings algorithms

If attempting to simulate from a multivariate standard normal distribution in a large dimension, when starting from the mode of the target, i.e., its mean γ, leaving the mode γis extremely unlikely, given the huge drop between the value of the density at the mode γ and at likely realisations Continue reading