Distributed Solar: The Democratizaton of Energy
Blogroll
- All about ENSO, and lunar tides (Paul Pukite)
- Harvard's Project Implicit
- Higgs from AIR describing NAO and EA
- Number Cruncher Politics
- The Mermaid's Tale
- American Association for the Advancement of Science (AAAS)
- South Shore Recycling Cooperative
- NCAR AtmosNews
- Lenny Smith's CHAOS: A VERY SHORT INTRODUCTION
- Rasmus Bååth's Research Blog
climate change
- Non-linear feedbacks in climate (discussion of Bloch-Johnson, Pierrehumbert, Abbot paper)
- James Hansen and granddaughter Sophie on moving forward with progress on climate
- "When Did Global Warming Stop"
- Solar Gardens Community Power
- RealClimate
- Risk and Well-Being
- Grid parity map for Solar PV in United States
- David Appell's early climate science
- The net average effect of a warming climate is increased aridity (Professor Steven Sherwood)
- Updating the Climate Science: What path is the real world following?
Archives
Category Archives: non-parametric statistics
Calculating Derivatives from Random Forests
(Comment on prediction intervals for random forests, and links to a paper.) (Edits to repair smudges, 2020-06-28, about 0945 EDT. Closing comment, 2020-06-30, 1450 EDT.) There are lots of ways of learning about mathematical constructs, even about actual machines. One … Continue reading
Posted in bridge to somewhere, Calculus, dependent data, dynamic generalized linear models, dynamical systems, ensemble methods, ensemble models, filtering, forecasting, hierarchical clustering, linear regression, model-free forecasting, Monte Carlo Statistical Methods, non-mechanistic modeling, non-parametric model, non-parametric statistics, numerical algorithms, prediction, R statistical programming language, random forests, regression, sampling, splines, statistical learning, statistical series, statistics, time derivatives, time series
Leave a comment
Simplistic and Dangerous Models
Originally posted on Musings on Quantitative Palaeoecology:
A few weeks ago there were none. Three weeks ago, with an entirely inadequate search strategy, ten cases were found. Last Saturday there were 43! With three inaccurate data points, there is enough information…
Reanalysis of business visits from deployments of a mobile phone app
Updated, 20th October 2020 This reports a reanalysis of data from the deployment of a mobile phone app, as reported in: M. Yauck, L.-P. Rivest, G. Rothman, “Capture-recapture methods for data on the activation of applications on mobile phones“, Journal … Continue reading
Posted in Bayesian computational methods, biology, capture-mark-recapture, capture-recapture, Christian Robert, count data regression, cumulants, diffusion, diffusion processes, Ecological Society of America, ecology, epidemiology, experimental science, field research, Gibbs Sampling, Internet measurement, Jean-Michel Marin, linear regression, mark-recapture, mathematics, maximum likelihood, Monte Carlo Statistical Methods, multilist methods, multivariate statistics, non-mechanistic modeling, non-parametric statistics, numerics, open source scientific software, Pierre-Simon Laplace, population biology, population dynamics, quantitative biology, quantitative ecology, R, R statistical programming language, sampling, sampling algorithms, segmented package in R, statistical ecology, statistical models, statistical regression, statistical series, statistics, stepwise approximation, stochastic algorithms, surveys, V. M. R. Muggeo
1 Comment
Procrustes tangent distance is better than SNCD
I’ve written two posts here on using a Symmetrized Normalized Compression Divergence or SNCD for comparing time series. One introduced the SNCD and described its relationship to compression distance, and the other applied the SNCD to clustering days at a … Continue reading
Posted in data science, dependent data, descriptive statistics, divergence measures, hydrology, Ian Dryden, information theoretic statistics, J.T.Kent, Kanti Mardia, non-parametric statistics, normalized compression divergence, quantitative ecology, R statistical programming language, spatial statistics, statistical series, time series
Leave a comment
Stream flow and P-splines: Using built-in estimates for smoothing
Mother Brook in Dedham Massachusetts was the first man-made canal in the United States. Dug in 1639, it connects the Charles River at Dedham, to the Neponset River in the Hyde Park section of Boston. It was originally an important … Continue reading
Posted in American Statistical Association, citizen data, citizen science, Clausius-Clapeyron equation, Commonwealth of Massachusetts, cross-validation, data science, dependent data, descriptive statistics, dynamic linear models, empirical likelihood, environment, flooding, floods, Grant Foster, hydrology, likelihood-free, meteorological models, model-free forecasting, non-mechanistic modeling, non-parametric, non-parametric model, non-parametric statistics, numerical algorithms, precipitation, quantitative ecology, statistical dependence, statistical series, stream flow, Tamino, the bootstrap, time series, water vapor
2 Comments
Series, symmetrized Normalized Compressed Divergences and their logit transforms
(Major update on 11th January 2019. Minor update on 16th January 2019.) On comparing things The idea of a calculating a distance between series for various purposes has received scholarly attention for quite some time. The most common application is … Continue reading
Posted in Akaike Information Criterion, bridge to somewhere, computation, content-free inference, data science, descriptive statistics, divergence measures, engineering, George Sughihara, information theoretic statistics, likelihood-free, machine learning, mathematics, model comparison, model-free forecasting, multivariate statistics, non-mechanistic modeling, non-parametric statistics, numerical algorithms, statistics, theoretical physics, thermodynamics, time series
4 Comments