Category Archives: count data regression

Phase Plane plots of COVID-19 deaths with uncertainties

I. Introduction. It’s time to fulfill the promise made in “Phase plane plots of COVID-19 deaths“, a blog post from 2nd May 2020, and produce the same with uncertainty clouds about the functional trajectories(*). To begin, here are some assumptions … Continue reading

Posted in American Statistical Association, Andrew Harvey, anomaly detection, count data regression, COVID-19, dependent data, dlm package, Durbin and Koopman, dynamic linear models, epidemiology, filtering, forecasting, Kalman filter, LaTeX, model-free forecasting, Monte Carlo Statistical Methods, numerical algorithms, numerical linear algebra, population biology, population dynamics, prediction, R, R statistical programming language, regression, statistical learning, stochastic algorithms | Tagged | Leave a comment

COVID-19 statistics, a caveat : Sources of data matter

There are a number of sources of COVID-19-related demographics, cases, deaths, numbers testing positive, numbers recovered, and numbers testing negative available. Many of these are not consistent with one another. One could hope at least rates would be consistent, but … Continue reading

Posted in coronavirus, count data regression, COVID-19, descriptive statistics, epidemiology, pandemic, policy metrics, politics, population biology, population dynamics, quantitative biology, quantitative ecology, sampling, SARS-CoV-2, statistical ecology, statistical series, statistics | 2 Comments

Reanalysis of business visits from deployments of a mobile phone app

Updated, 20th October 2020 This reports a reanalysis of data from the deployment of a mobile phone app, as reported in: M. Yauck, L.-P. Rivest, G. Rothman, “Capture-recapture methods for data on the activation of applications on mobile phones“, Journal … Continue reading

Posted in Bayesian computational methods, biology, capture-mark-recapture, capture-recapture, Christian Robert, count data regression, cumulants, diffusion, diffusion processes, Ecological Society of America, ecology, epidemiology, experimental science, field research, Gibbs Sampling, Internet measurement, Jean-Michel Marin, linear regression, mark-recapture, mathematics, maximum likelihood, Monte Carlo Statistical Methods, multilist methods, multivariate statistics, non-mechanistic modeling, non-parametric statistics, numerics, open source scientific software, Pierre-Simon Laplace, population biology, population dynamics, quantitative biology, quantitative ecology, R, R statistical programming language, sampling, sampling algorithms, segmented package in R, statistical ecology, statistical models, statistical regression, statistical series, statistics, stepwise approximation, stochastic algorithms, surveys, V. M. R. Muggeo | 1 Comment

A quick note on modeling operational risk from count data

The blog statcompute recently featured a proposal encouraging the use of ordinal models for difficult risk regressions involving count data. This is actually a second installment of a two-part post on this problem, the first dealing with flexibility in count … Continue reading

Posted in American Statistical Association, Bayesian, Bayesian computational methods, count data regression, dichotomising continuous variables, dynamic generalized linear models, Frank Harrell, Frequentist, Generalize Additive Models, generalized linear mixed models, generalized linear models, GLMMs, GLMs, John Kruschke, maximum likelihood, model comparison, Monte Carlo Statistical Methods, multivariate statistics, nonlinear, numerical software, numerics, premature categorization, probit regression, statistical regression, statistics | Tagged , , , | Leave a comment