Distributed Solar: The Democratizaton of Energy
Blogroll
- Musings on Quantitative Paleoecology
- Mark Berliner's video lecture "Bayesian mechanistic-statistical modeling with examples in geophysical settings"
- Number Cruncher Politics
- SASB
- American Statistical Association
- Logistic curves in market disruption
- Busting Myths About Heat Pumps
- Pat's blog
- London Review of Books
- "Impacts of Green New Deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries" (Jacobson, Delucchi, Cameron, et al)
climate change
- Eli on the spectroscopic basis of atmospheric radiation physical chemistry
- Tell Utilities Solar Won't Be Killed
- Simple box models and climate forcing
- Ricky Rood's “What would happen to climate if we (suddenly) stopped emitting GHGs today?
- Energy payback period for solar panels
- Grid parity map for Solar PV in United States
- Skeptical Science
- Ray Pierrehumbert's site related to "Principles of Planetary Climate"
- CLIMATE ADAM
- “The discovery of global warming'' (American Institute of Physics)
Archives
Jan Galkowski
Category Archives: count data regression
Phase Plane plots of COVID-19 deaths with uncertainties
I. Introduction. It’s time to fulfill the promise made in “Phase plane plots of COVID-19 deaths“, a blog post from 2nd May 2020, and produce the same with uncertainty clouds about the functional trajectories(*). To begin, here are some assumptions … Continue reading
Posted in American Statistical Association, Andrew Harvey, anomaly detection, count data regression, COVID-19, dependent data, dlm package, Durbin and Koopman, dynamic linear models, epidemiology, filtering, forecasting, Kalman filter, LaTeX, model-free forecasting, Monte Carlo Statistical Methods, numerical algorithms, numerical linear algebra, population biology, population dynamics, prediction, R, R statistical programming language, regression, statistical learning, stochastic algorithms
Tagged prediction intervals
Leave a comment
COVID-19 statistics, a caveat : Sources of data matter
There are a number of sources of COVID-19-related demographics, cases, deaths, numbers testing positive, numbers recovered, and numbers testing negative available. Many of these are not consistent with one another. One could hope at least rates would be consistent, but … Continue reading
Reanalysis of business visits from deployments of a mobile phone app
Updated, 20th October 2020 This reports a reanalysis of data from the deployment of a mobile phone app, as reported in: M. Yauck, L.-P. Rivest, G. Rothman, “Capture-recapture methods for data on the activation of applications on mobile phones“, Journal … Continue reading
Posted in Bayesian computational methods, biology, capture-mark-recapture, capture-recapture, Christian Robert, count data regression, cumulants, diffusion, diffusion processes, Ecological Society of America, ecology, epidemiology, experimental science, field research, Gibbs Sampling, Internet measurement, Jean-Michel Marin, linear regression, mark-recapture, mathematics, maximum likelihood, Monte Carlo Statistical Methods, multilist methods, multivariate statistics, non-mechanistic modeling, non-parametric statistics, numerics, open source scientific software, Pierre-Simon Laplace, population biology, population dynamics, quantitative biology, quantitative ecology, R, R statistical programming language, sampling, sampling algorithms, segmented package in R, statistical ecology, statistical models, statistical regression, statistical series, statistics, stepwise approximation, stochastic algorithms, surveys, V. M. R. Muggeo
1 Comment
A quick note on modeling operational risk from count data
The blog statcompute recently featured a proposal encouraging the use of ordinal models for difficult risk regressions involving count data. This is actually a second installment of a two-part post on this problem, the first dealing with flexibility in count … Continue reading
Posted in American Statistical Association, Bayesian, Bayesian computational methods, count data regression, dichotomising continuous variables, dynamic generalized linear models, Frank Harrell, Frequentist, Generalize Additive Models, generalized linear mixed models, generalized linear models, GLMMs, GLMs, John Kruschke, maximum likelihood, model comparison, Monte Carlo Statistical Methods, multivariate statistics, nonlinear, numerical software, numerics, premature categorization, probit regression, statistical regression, statistics
Tagged dichotomising continuous variables, dichotomizing continuous variables, premature categorization, splines
Leave a comment