Distributed Solar: The Democratizaton of Energy
Blogroll
climate change
- The Carbon Cycle
- `Who to believe on climate change': Simple checks
- “Ways to [try to] slow the Solar Century''
- The net average effect of a warming climate is increased aridity (Professor Steven Sherwood)
- "A field guide to the climate clowns"
- Model state level energy policy for New Englad
- SolarLove
- James Powell on sampling the climate consensus
- Tuft's Professor Kenneth Lang on the physical chemistry of the Greenhouse Effect
- Bloomberg interactive graph on “What's warming the world''
Archives
Jan Galkowski
Category Archives: approximate Bayesian computation
Papers of the day
From the Machine Learning and Computational Modeling Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran: A. Ahmadian, K. Fouladi, B. N. Araabi, “Writer identification using a probabilistic model of handwritten digits and Approximate Bayesian Computation,” International … Continue reading
Cory Lesmeister’s treatment of Simson’s Paradox (at “Fear and Loathing in Data Science”)
(Updated 2016-05-08, to provide reference for plateaus of ML functions in vicinity of MLE.) Simpson’s Paradox is one of those phenomena of data which really give Statistics a substance and a role, beyond the roles it inherits from, say, theoretical … Continue reading
Posted in Akaike Information Criterion, approximate Bayesian computation, Bayes, Bayesian, evidence, Frequentist, games of chance, information theoretic statistics, Kalman filter, likelihood-free, mathematics, maths, maximum likelihood, Monte Carlo Statistical Methods, probabilistic programming, rationality, Rauch-Tung-Striebel, Simpson's Paradox, state-space models, statistical dependence, statistics, stochastics
Leave a comment
p-values and hypothesis tests: the Bayesian(s) rule
The American Statistical Association of which I am a longtime member issued an important statement today which will hopefully move statistical practice in engineering and especially in the sciences away from the misleading practice of using p-values and hypothesis tests. … Continue reading
Posted in approximate Bayesian computation, arXiv, Bayes, Bayesian, Bayesian inversion, bollocks, Christian Robert, climate, complex systems, data science, Frequentist, information theoretic statistics, likelihood-free, Markov Chain Monte Carlo, MCMC, Monte Carlo Statistical Methods, population biology, rationality, reasonableness, science, scientific publishing, statistical dependence, statistics, stochastics, Student t distribution
Leave a comment
“Grid shading by simulated annealing” [Martyn Plummer]
Source: Grid shading by simulated annealing (or what I did on my holidays), aka “fun with GCHQ job adverts”, by Martyn Plummer, developer of JAGS. Excerpt: I wanted to solve the puzzle but did not want to sit down with … Continue reading
Posted in approximate Bayesian computation, Bayesian, Bayesian inversion, Boltzmann, BUGS, Christian Robert, Gibbs Sampling, JAGS, likelihood-free, Markov Chain Monte Carlo, Martyn Plummer, mathematics, maths, MCMC, Monte Carlo Statistical Methods, optimization, probabilistic programming, SPSA, stochastic algorithms, stochastic search
Leave a comment
Generating supports for classification rules in black box regression models
Inspired by the extensive and excellent work in approximate Bayesian computation (see also), especially that done by Professors Christian Robert and colleagues (see also), and Professor Simon Wood (see also), it occurred to me that the complaints regarding lack of … Continue reading
Posted in approximate Bayesian computation, Bayes, Bayesian, Bayesian inversion, generalized linear models, machine learning, numerical analysis, numerical software, probabilistic programming, rationality, reasonableness, state-space models, statistics, stochastic algorithms, stochastic search, stochastics, support of black boxes
Leave a comment
reblog: “Tiny Data, Approximate Bayesian Computation and the Socks of Karl Broman”
It’s Rasmus Bååth, in a post and video of which I am very fond: http://www.sumsar.net/blog/2014/10/tiny-data-and-the-socks-of-karl-broman/.
On differential localization of tumors using relative concentrations of ctDNA. Part 1.
Like most mammalian tissue, tumors often produce shards of DNA as a byproduct of cell death and fracture. This circulating tumor DNA is being studied as a means of detecting tumors or their resurgence after treatment. (See also a Q&A … Continue reading
Posted in approximate Bayesian computation, Bayesian, Bayesian inversion, cardiovascular system, diffusion, dynamic linear models, eigenanalysis, engineering, forecasting, mathematics, maths, medicine, networks, prediction, spatial statistics, statistics, stochastic algorithms, stochastic search, wave equations
3 Comments
“The Bayesian Second Law of Thermodynamics” (Sean Carroll, and collaborators)
http://www.preposterousuniverse.com/blog/2015/08/11/the-bayesian-second-law-of-thermodynamics/ See also.
Posted in approximate Bayesian computation, Bayesian, bifurcations, Boltzmann, capricious gods, dynamical systems, ensembles, games of chance, Gibbs Sampling, information theoretic statistics, Josiah Willard Gibbs, mathematics, maths, physics, probability, rationality, reasonableness, science, statistics, stochastic algorithms, stochastics, thermodynamics, Wordpress
Leave a comment
“Unbiased Bayes for Big Data: Path of partial posteriors” (Christian Robert)
Unbiased Bayes for Big Data: Path of partial posteriors.
engineering and understanding with stable models
Stable distributions or Lévy -stable models is a class of probability distributions which contains the Gaussian, the Cauchy (or Lorentz), and the Lévy distribution. They are parameterized by an which is . Values of of 1 or less give distributions … Continue reading
Posted in approximate Bayesian computation, Bayesian, citizen science, climate, climate change, climate education, differential equations, diffusion processes, ecology, economics, forecasting, geophysics, information theoretic statistics, IPCC, mathematics, mathematics education, maths, meteorology, model comparison, NOAA, oceanography, physics, rationality, reasonableness, risk, science, science education, stochastic search, the right to know
Leave a comment
On nested equivalence classes of climate models, ordered by computational complexity
I’m digging into the internals of ABC, for professional and scientific reasons. I’ve linked a great tutorial elsewhere, and argued that this framework, advanced by Wood, and Wilkinson (Robert), and Wilkinson (Darren), and Hartig and colleagues, and Robert and colleagues, … Continue reading
Posted in approximate Bayesian computation, Bayes, Bayesian, biology, ecology, environment, forecasting, geophysics, IPCC, mathematics, maths, MCMC, meteorology, NCAR, NOAA, oceanography, optimization, population biology, Principles of Planetary Climate, probabilistic programming, R, science, stochastic algorithms, stochastic search
Leave a comment
“[W]e want to model the process as we would simulate it.”
Professor Darren Wilkinson offers a pithy insight on how to go about constructing statistical models, notably hierarchical ones: “… we want to model the process as we would simulate it ….” This appears in his blog post One-way ANOVA with … Continue reading
Posted in approximate Bayesian computation, Bayes, Bayesian, biology, ecology, engineering, forecasting, mathematics, mathematics education, maths, model comparison, optimization, population biology, probabilistic programming, rationality, reasonableness, risk, science, science education, sociology, statistics, stochastic algorithms
Tagged ANOVA
Leave a comment
struggling with problems already partly solved by others
Climate modelers and models see as their frontier the problem of dealing with spontaneous dynamics in systems such as atmosphere or ocean which are not directly forced by boundary conditions such as radiative forcing due to increased greenhouse gas (“GHG”) … Continue reading
Posted in approximate Bayesian computation, Bayes, Bayesian, biology, climate, climate education, differential equations, ecology, engineering, environment, geophysics, IPCC, mathematics, mathematics education, meteorology, model comparison, NCAR, NOAA, oceanography, physics, population biology, probabilistic programming, rationality, reasonableness, risk, science, science education, statistics, stochastic algorithms, stochastic search
1 Comment